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Abstract. Many urban settlements result from a spatially distributed, decentralized building process. Here
we analyze the topological patterns of organization of a large collection of such settlements using the
approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), ro-
bustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins
analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random fail-
ures) to meshed urban patterns. The latter are shown to be more robust and efficient.

PACS. 89.75.Hc Networks and genealogical trees – 89.40.Bb Land transportation – 89.65.Lm Urban
planning and construction

1 Introduction

Human activities take place on a spatial matrix largely
defined by three types of transportation networks. These
involve matter (streets, roads, highways, railways, airport
networks), energy (the power grid) and information (Inter-
net, telephone networks). One of the oldest human-made
webs is the city. The network of streets in a city is de-
scribable in terms of a grid of linked nodes defining a
more or less ordered pattern. Although urban structures
are not limited to a two-dimensional domain, cities are
essentially planar structures. The architecture of streets
and roads crossing the urban structure defines a basic
template that strongly constrains the further development
of other webs (such as the power grid or communication
nets). Cities are usually considered as organized hierarchi-
cally into neighbourhoods, whose rank and spatial extent
depend on a number of traits, including the economic func-
tion which they offer to the surrounding population. Hier-
archical structures would be organized around specialized
centres serving larger areas, whereas those of local needs
serve smaller ones.

The growth dynamics of cities has changed over time,
and modern towns experience rapid, often uncontrolled
patterns of growth that escape from a top-down, planned
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scheme [1]. This happens at many different scales: today,
in developing countries, besides the exponential growth
of the main urban centers, we attend the simultaneous
growth of thousands of slums, shantytowns and squatter
settlements which accounts for one half of all urbanization
processes in the world. Their growth follows a pattern of-
ten described as “organic”, marked by many distributed
decisions, and often characterized by a large degree of
complexity [2]. At the scale of their global shape, many
cities expand today largely through this second mech-
anism and recent studies reveal that they actually dis-
play fractal-like patterns not very different from those
displayed by natural systems [3,4]. In this context, re-
cent studies on morphological patterns of large urban
structures suggest that some universality classes might
be at work [5]. Specifically, Carvalho and Penn studied
the statistical patterns of street maps in a large collection
of cities, looking for regularities derived from rank-order
curves using data collapse. Fractal patterns were reported
and their features were suggested to be the result of dis-
tinct Levy processes.

A complementary analysis can be performed by look-
ing at smaller scales in urban zones involving distributed
(instead of planned) decisions. At a lower scale, whether in
parts of a large modern city or in smaller settlements, de-
centralized growth of street networks can also be observed
throughout the whole history of the city. Many of these
networks do not result from a planning process where ad-
dresses are attributed prior to any construction, but rather
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emerge or evolve in an incremental way through a physical
process involving local aggregation rules [6]. It follows that
in many cases, the resulting topologies are complex and
deviate from simple regular patterns such as square-grids.
The common traits of such street networks are largely un-
known and their quantitative description is lacking.

When dealing with the architecture of city networks
(including the type of networks considered here but also
others such as road networks) two different approaches
can be considered. One is to explore the dynamic pat-
terns that can arise on top of a pre-defined web. In this
approximation the key question would be how the traffic of
matter can be optimally distributed so that congestion (ef-
ficiency) is properly minimized (optimized). As discussed
by some authors [7–9], two key requirements need to be
fulfilled, namely avoid large detours and reduce the cost,
which are assumed proportional to the length of the paths.
Using Boltzmann and Darwinian strategies, optimal solu-
tions can be found [10]. Such methods deal with global
energy functions, and require solving a class of frustrated
optimization problems. Not surprisingly, the optimal net-
works are somewhere located between two extreme sit-
uations. A different approach, which we take here, is to
explore the topological organization of street networks as
a static object. Such an approach is of value in those cases
where no evidence for a planned building is at work (and
thus no global optimization is involved). In this case, the
network is the result of local decisions performed by a
distributed set of individuals who made their decisions
based on multiple constraints, not necessarily associated
to global detour lengths or efficient traffic. As shown be-
low, real street networks are also located somewhere be-
tween two well-known types of graphs which are used here
as null models for comparison.

In this paper, we make use of graph theory as a power-
ful tool to characterize and compare the topology of street
networks of non-planned settlements and to provide in-
sights about their evolution and functional properties. The
paper is organized as follows: in Section 2 the data set of
networks used here is described. In Section 3, we quantify
topological patterns in these networks. In Section 4, the
efficiency of the webs is analyzed and the network robust-
ness studied in Section 5. A general discussion is presented
in Section 6.

2 Street networks

A number of theoretical studies have been exploring some
relevant patterns present in city maps and road networks.
Some of these studies involve considering streets them-
selves as the units of a so called information city net-
work [11,12]. Thus, two streets are linked if they inter-
sect each other. In this way, topological patterns are used
to characterize information patterns in city structure or
navigation along road networks [13]. Here we concentrate
our analysis in both topological and geometrical patterns
displayed by self-organized street networks.

Any of these street networks (SNS) can be described
by an embedded planar graph [14] G = (V, E) where
V = {(vi, xi, yi), (i = 1, . . . , n)} is the set of n nodes

Fig. 1. Binary maps (left side) and the graph representation
(right side) of 3 examples of street networks. On the binary
maps, the white space correspond to public space. The graphs
were established from the binary maps by considering the in-
tersections and dead-ends of streets as the nodes, and the seg-
ments of streets joining the nodes as the edges.

characterized by their (x, y) position and diameter, and
E = {(vi, vj)} the set of m edges/connections between
nodes and characterized by their length dij . The edges cor-
respond to sub-sections of streets connecting two nodes.
The nodes correspond to the squares, the intersections be-
tween streets and their dead ends. Here we study a large
set of 41 non-planned settlements. These networks corre-
spond to urban environments that evolved without global
supervision through at least part of their development.
The selected networks correspond mainly to settlements
originated from Europe, Africa, Central America, India
and one shantytown (El Agustino, Lima, Peru).

Street networks where selected among a database of
300 maps maintained by the NXI GESTATIO laboratory.
The samples analyzed here correspond to the largest zones
possible that were not directly in contact with strong het-
erogeneities, such as rivers or interface with other types of
urbanization. The samples were square delimited, in order
to introduce an equivalent artificial limit for all samples
following a standard introduced by Caminos et al. [15].
The edges and nodes correspond exclusively to public
spaces. Private spaces such as courtyards, gardens or pri-
vate paths were excluded. We thus established a database
of selected binary maps where public space was indicated
in white and private spaces in black (Fig. 1). Table 1
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Table 1. Basic characteristics of the networks: settlement name and number of the sample, country, number of nodes n,
mean degree 〈k〉; average path length l and its value lrand in a corresponding random graph (see Ref. [35]); parameter ξ in an
exponential decay of the degree (k) distribution tail P (k) ∼ e−k/ξ (for k ≥ 3) and assortativity coefficient Γ (∗ indicates that
Γ is significantly different from 0) .

Settlement Country n 〈k〉 l lrand ξ Γ

ALGER CASBAH ALGERIA 132 2.17 9.50 6.32 0.468 –0.207∗

AMIENS (XIXth) FRANCE 159 2.81 8.43 4.91 0.692 –0.047
ARLES (#1) FRANCE 110 2.58 6.97 4.96 0.668 0.103
ARLES (#2) FRANCE 99 2.16 7.61 5.96 0.506 –0.144

AT SJEN ALGERIA 173 2.24 9.47 6.38 0.518 –0.165∗

BENARES (#1) INDIA 339 2.48 13.48 6.40 0.365 –0.135∗

BENARES (#3) INDIA 280 2.33 13.60 6.67 0.447 –0.153∗

BEZIERS FRANCE 90 2.33 6.99 5.31 0.610 –0.147
BONHEIDEN (#1) BELGIUM 191 2.34 10.51 6.19 0.497 –0.116∗

BONHEIDEN (#2) BELGIUM 213 2.26 10.80 6.56 0.719 –0.116∗

BONHEIDEN (#3) BELGIUM 237 2.24 13.61 6.79 0.478 –0.183∗

CAHORS FRANCE 143 2.56 8.49 5.28 0.582 –0.108
CORDOBA (#1) SPAIN 78 2.21 6.67 5.51 0.535 –0.230∗

CORDOBA (#2) SPAIN 66 2.42 5.73 4.73 0.756 –0.277∗

CORDOBA (#3) SPAIN 82 2.61 6.62 4.59 0.501 –0.097
CORDOBA (#4) SPAIN 65 2.31 5.80 4.99 0.572 –0.138

DAX FRANCE 55 2.62 4.85 4.16 0.692 –0.178
ECIJA (#1) SPAIN 70 2.31 6.86 5.06 – –0.139
ECIJA (#2) SPAIN 69 2.32 6.25 5.03 0.550 –0.202∗

EL AGUSTINO PERU 118 2.02 11.99 6.80 – –0.241∗

GHARDAIA (#1) ALGERIA 170 2.07 11.24 7.06 – –0.207∗

GHARDAIA (#2) ALGERIA 177 2.18 9.84 6.64 – –0.253∗

GOSLAR GERMANY 63 2.41 5.73 4.70 0.796 –0.079
HOMS (#1) SYRIA 149 2.79 7.67 4.87 0.721 0.040
HOMS (#2) SYRIA 137 2.34 7.93 5.80 0.542 –0.126
LUBECK GERMANY 60 2.80 5.12 3.98 0.976 –0.149

MADRIGAL SPAIN 63 2.60 5.38 4.33 0.647 –0.074
MARTINA FRANCA (#1) ITALY 115 2.28 7.82 5.76 – –0.122
MARTINA FRANCA (#2) ITALY 116 2.14 7.89 6.26 0.746 –0.230∗

PUTIGNANO ITALY 133 2.20 8.06 6.22 0.469 –0.189∗

QAZVIN (#1) ALGERIA 101 2.79 6.70 4.49 0.851 –0.037
QAZVIN (#2) ALGERIA 104 2.75 6.90 4.59 0.832 0.061

ROME ITALY 108 2.76 6.80 4.61 0.695 –0.099
ROSTOCK GERMANY 52 2.73 4.58 3.93 0.747 –0.035
SABVIZAR IRAN 91 2.04 7.83 6.31 – –0.209∗

SIENE ITALY 61 2.39 5.40 4.71 0.760 –0.176
SOEST (#1) GERMANY 58 2.52 5.49 4.40 0.673 –0.123
SOEST (#2) GERMANY 45 2.44 5.04 4.26 0.600 –0.176

UDINE ITALY 87 2.87 5.92 4.23 0.823 –0.039
VERONA ITALY 93 2.86 6.19 4.31 0.782 –0.019

ZARAGOZA SPAIN 106 2.43 7.17 5.24 0.585 –0.170∗

summarizes the main characteristics of these networks.
They are relatively small, ranging from 45 to 339 nodes
and all defining a single connected component (i.e. there
is a path through the graph connecting every two nodes).

The standard comparisons with theoretical models
(such as the standard, Erdös-Renyi random graph [16]) of-
ten taken as references in the studies of Small-World and
Scale-Free networks lose their relevance in the framework
of planar graphs [17]. Unfortunately, there are few general
analytic results (such as path lengths or degree distribu-
tions) on random planar graphs [18,19], and they essen-
tially consist in asymptotic results difficult to apply on

the finite size networks considered in this paper. Here, we
will focus on a comparison with two extremal models, the
Minimal Spanning Tree (MST, [20–22]) and the Greedy
Triangulation (GT). Like the settlements analyzed here,
they are planar graphs. Given the set of nodes V in the
corresponding city network, the MST defines the short-
est tree which connects all the nodes into a single con-
nected component. We used the Kruskal’s algorithm [21]
to build MST, that is, edges are sorted in increasing or-
der of their length, and added to the graph following this
sorting order and only if they do not introduce a cycle. A
triangulation defines a planar subdivision whose bounded
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faces are triangles and whose vertices are points of V [23].
There are several ways for computing the triangulation,
the GT being a very simple case of triangulation of a pla-
nar point set [24]: it can be constructed by sorting all
edges by increasing order of their length, and, browsing
the list of edges in this order, inserting each edge only if
it does not produce any intersections with any other edge
already added.

3 Topological patterns

3.1 Degree and degree correlations

The characteristic feature of the degree distributions is
that they are single-scaled (Fig. 2), i.e. they follow a fast
decay that can be approximated by an exponential decay
P (k) ∼ e−k/ξ. Table 2 shows the parameter values ξ in
the networks where the tails were long enough. Degree
correlations were estimated by calculating the “assorta-
tivity coefficient” Γ as proposed by Newman [25]. It is
defined as:

Γ =
c
∑
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c
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1
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2 (ji + ki)
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where ji and ki are the degrees of the vertices at the ends
of the ith edge, with i = 1, . . . , m, c = 1/m and m being
the number of edges. When Γ = 0, nodes are connected
independently from their neighbor degree. Γ > 0 indicate
an assortative network where nodes with a given degree
connect preferentially with nodes having similar degrees,
while Γ < 0 corresponds to disassortative networks where
nodes connect preferentially with nodes having a differ-
ent degree to them. Most street networks appear to be
disassortative, among which 17 are significant, and three
networks have a positive but non-significant assortativity
coefficient (Tab. 1).

3.2 Structure of cycles and path system

Street networks show no or little clustering (i.e. a low
probability of triangles). This is expected, given the ten-
dency of streets to be parallel, at least on local scales. In-
tersections of pairs of parallel streets will tend to enhance
the presence of cycles with four elements, as expected from
a mesh-like system. Since the SNS are planar graphs, we
can easily quantify the amount of cycles in these networks:
using Euler’s formula, the number of faces f (excluding
the infinite face) associated with any planar graph is

f = m − n + 1, (2)

where m is the number of edges and n the number of
nodes. As the number of edges m of a planar graph with
n nodes is bounded by 3n − 6, the number of faces is

Fig. 2. Cumulative degree distribution of 3 examples of street
networks: Verona (closed-circles), Martina Franca #2 (open-
circles) and Benares #3 (triangles). The distributions are
single-scaled, i.e. they decrease very fast from k = 3. The dis-
tributions tails (for k ≥ 3) can be approximated by an expo-
nential decay.

bounded by 2n − 5. We can thus compute a normalized
“meshedness coefficient”:

M =
m − n + 1

2n − 5
, (3)

where M can vary from zero (tree structure) to one (com-
plete planar graph, which is a triangulation).

None of the networks analyzed here is acyclic, but
the meshedness M shows considerable variability (Tab. 2)
from M = 0.009 (El Agustino), which corresponds to
a structure very close to a tree (only 2 cycles in El
Agustino), to M = 0.211 (Qazvin #2, Iran), which corre-
sponds to almost grid-like structures. In these networks,
M appears to be independent of the network size n
(r = −0.179, N = 41, p = 0.263).

4 Network efficiency

The characteristics of the path system can be obtained by
analyzing the shortest paths between all pairs of nodes.
Street networks are spatially extended webs, it is thus pos-
sible to work with two types of distance measures for the
shortest paths: topological and geometrical. Topological
path length is computed from the number of nodes the
path is going through; while the geometrical path length
is the sum of the lengths of all edges the path is going
through. Recently, Latora and Marchiori [26] proposed the
so-called “average efficiency”:

E(G) =
1

n(n − 1)

∑

vi �=vj∈V

1
d∗ij

, (4)

where d∗ij corresponds to the shortest path between the
nodes i and j. For a given graph G, the so-called global
efficiency Eglob is determined by computing the ratio be-
tween the average efficiency measure E(G) for all paths
in the graph G,and E(Kn), the average efficiency for all
paths in the complete graph of order n (it possesses the
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Table 2. Relative geometric and topologic global efficiency E∗
glob,G and E∗

glob,T respectively; Meshedness coefficient M ; robust-
ness to random removal of nodes fR and selective removal of highest degrees fS , relative robustness f∗

R and relative length L∗.
Settlements are sorted in the decreasing order of their E∗

glob,G value. Note that the two lower values of E∗
glob,G are negative,

which indicates that these networks have lower efficiencies than would have the MST.

Settlement E∗
glob,G E∗

glob,T M fR fS f∗
R L∗

AMIENS (XIXth) 0.625 0.447 0.176 0.283 0.157 0.550 0.235
ROSTOCK 0.621 0.462 0.182 0.327 0.173 0.598 0.228
VERONE 0.619 0.508 0.177 0.301 0.161 0.569 0.237
LUBECK 0.614 0.492 0.209 0.317 0.167 0.600 0.219

SOEST (#1) 0.580 0.389 0.126 0.276 0.172 0.488 0.150
QAZVIN (#1) 0.559 0.478 0.193 0.287 0.168 0.548 0.232

UDINE 0.553 0.502 0.188 0.299 0.161 0.579 0.242
ARLES (#1) 0.540 0.450 0.095 0.273 0.145 0.517 0.187

QAZVIN (#2) 0.536 0.474 0.211 0.269 0.115 0.515 0.245
HOMS (#1) 0.533 0.510 0.201 0.275 0.148 0.555 0.238

DAX 0.525 0.461 0.165 0.309 0.145 0.553 0.204
ROME 0.496 0.485 0.164 0.287 0.176 0.569 0.237

CORDOBA (#3) 0.480 0.378 0.157 0.244 0.122 0.409 0.184
MADRIGAL 0.450 0.445 0.157 0.286 0.127 0.533 0.216
SOEST (#2) 0.447 0.358 0.106 0.267 0.133 0.447 0.157

CAHORS 0.442 0.419 0.146 0.245 0.126 0.487 0.212
SIENE 0.413 0.390 0.086 0.279 0.098 0.480 0.139

CORDOBA (#2) 0.412 0.373 0.118 0.258 0.136 0.423 0.163
ZARAGOZA 0.401 0.408 0.123 0.245 0.085 0.464 0.155

BONHEIDEN (#1) 0.392 0.355 0.100 0.162 0.094 0.293 0.116
MARTINA F. (#1) 0.390 0.369 0.059 0.217 0.070 0.393 0.138

PUTIGNANO 0.382 0.412 0.058 0.195 0.090 0.381 0.129
BONHEIDEN (#2) 0.362 0.369 0.074 0.183 0.033 0.333 0.117

BENARES (#1) 0.350 0.382 0.130 0.177 0.121 0.350 0.192
ECIJA (#1) 0.342 0.313 0.088 0.243 0.114 0.415 0.122
GOSLAR 0.321 0.384 0.091 0.254 0.079 0.424 0.156
AT SJEN 0.309 0.364 0.063 0.191 0.075 0.350 0.147

GHARDAIA (#2) 0.307 0.340 0.046 0.186 0.068 0.347 0.117
BONHEIDEN (#3) 0.305 0.278 0.060 0.139 0.051 0.237 0.101

ECIJA (#2) 0.301 0.383 0.075 0.232 0.116 0.380 0.142
BEZIERS 0.291 0.377 0.079 0.222 0.078 0.376 0.163

CORDOBA (#4 0.288 0.391 0.088 0.246 0.092 0.446 0.177
ARLES (#2) 0.273 0.344 0.058 0.182 0.081 0.311 0.110

ALGIERS CASBAH 0.258 0.299 0.061 0.159 0.076 0.266 0.120
CORDOBA (#1) 0.252 0.325 0.075 0.218 0.090 0.350 0.111

MARTINA F. (#2) 0.251 0.385 0.037 0.181 0.052 0.317 0.108
GHARDAIA (#1) 0.245 0.272 0.027 0.141 0.088 0.218 0.068
BENARES (#3) 0.188 0.306 0.090 0.150 0.075 0.267 0.174

HOMS (#2) 0.134 0.415 0.093 0.219 0.088 0.403 0.169
EL AGUSTINO -0.055 0.165 0.009 0.085 0.034 0.096 0.090

SABVIZAR -0.119 0.273 0.034 0.143 0.055 0.144 0.104

same vertices as G, but with all the n(n − 1)/2 possible
edges):

Eglob = E(G)/E(Kn). (5)

We can compute two different measures of global effi-
ciency, Eglob,G and Eglob,T , whether we use geometrical
or topological distances respectively.

The geometric efficiency Eglob,G also varies much from
low values (minimal Eglob,G = 0.4 in El Agustino) to val-
ues close to the one obtained in a complete graph (max-
imal Eglob,G = 0.837 in Rostock, Germany; see Tab. 2).
Eglob,G does not vary with the network size n in GT net-
works (Fig. 3a), while it decreases with the increase of n

in MST networks. All the SNS display intermediate val-
ues of Eglob,G comprised between the one of MST and
GT networks, with the exception of two settlements (El
Agustino and Sabvizar) that have even lower values for
Eglob,G than the corresponding MST. In the SNS, Eglob,G

decreases quite similarly to MSTs with size n, but with a
lot of variability between networks of similar sizes. This
variability may be due to the network meshedness. We
compute the relative value of the geometric global effi-
ciency,

E∗
glob,G =

ES
glob,G − EMST

glob,G

EGT
glob,G − EMST

glob,G

, (6)
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Fig. 3. Relation between geometric (a), topologic (c) global efficiency Eglob,G andEglob,T and network size n. Eglob,G is inde-
pendent of n in GT networks (upward triangles), while it decrease with an increase in n for both settlement networks (circles)
and MST networks (downward triangles). Eglob,T decrease with an increasing network size n for all networks. However, much
variability is present in both Eglob,G and Eglob,T . The relative efficiency, both geometrical E∗

glob,G (c) and topological E∗
glob,T

(d) is positively correlated with network meshedness M .

where ES
glob,G, EMST

glob,G and EGT
glob,G is the geometric global

efficiency in the SNS, MST and GT networks respectively.
Indeed, there is a clear correlation between E∗

glob,G and
M(r = 0.82; N = 41, p < 0.001, Fig. 3b), while there is no
significant correlation between E∗

glob,G and n (r = −0.236,
N = 41, p = 0.137). Settlements that are more meshed
have more efficient path systems at the geometric level.

The topological global efficiency Eglob,T also shows
much variability ranging from 0.104 to 0.287 in the SNS.
It decreases with an increase in the network size n for
SNS, GT and MST networks (Fig. 3c). However, Eglob,T

also exhibits a certain variability for similar network size
n in the SNS. As for geometric efficiency, this variability
may be due to the network meshedness. We thus compute
the relative value of E∗

glob,T normalized between the one
observed in the MST and in the GT networks:

E∗
glob,T =

ES
glob,T − EMST

glob,T

EGT
glob,T − EMST

glob,T

, (7)

where ES
glob,T , EMST

glob,T and EGT
glob,T is the topologic global

efficiency in the SNS, MST and GT networks respectively.
Again, there is a clear correlation between meshedness

M and E∗
glob,T (r = 0.83, N = 41, p < 0.001; Fig. 3d)

while there is no significant correlation between E∗
glob,T

and n (r = −0.267, N = 41, p = 0.09). Therefore, in the
SNS, both higher topologic and geometric path system
efficiencies are reached by increasing the meshedness of
the network.

5 Network robustness

Beyond the efficiency associated to a given network topol-
ogy, an additional and complementary approach is the
analysis of fragility against random failures. The nature
of such failures depends on the particular kind of net-
work considered: it might consist in mutations in gene net-
works, failures of routers in the Internet or species loss in
an ecosystem. For urban networks, failures can consist in
streets interrupted by landslides, floods, crumbled build-
ings, or by more temporary events such as demonstrations.
The robustness of a network is measured by studying how
it becomes fragmented as an increasing fraction of nodes is
removed. The network fragmentation is usually measured
as the fraction of nodes contained by the largest connected
component. This node removal can take place either ran-
domly or in decreasing order of their degree (selective re-
moval). In homogeneous random graphs, the fragmenta-
tion of the network is similar under random and selective
removal of nodes [27,28]. Several real networks have been
reported to deviate clearly from this prediction of random
graph theory and to exhibit a high resilience to random re-
moval and high vulnerability to selective removal of nodes
[27–30]. This property was first proposed as a unique fea-
ture of scale-free networks [27]. However several food-webs
that are not scale-free networks also exhibit this property,
and it has thus been conjectured that it could come from
a more general feature of the degree distribution, such as
its degree of asymmetry [31] or degree correlations [25].
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Here we explore the effects of node removal in SNS and
compare them with both MST and GT networks.

For each experiment, we have determined the evolution
of the relative size S of the largest connected component,
i.e. the fraction of nodes contained in it, with the fraction f
of disconnected nodes (1000 runs for each network) under
a random or a selective removal of nodes. We define the
random and selective robustness (fR and fS , respectively)
as the values of f required for S to reach the value S = 0.5
in each type of removal.

The fragmentation shows a common feature in all SNS
(Fig. 4a): The decrease of S is clearly slower when the
nodes are disconnected randomly than when higher de-
grees are disconnected first. This property is very differ-
ent from what is observed in a classical random graph,
where the decrease of S is similar under both random and
selective removal of nodes. Indeed, the fragmentation of
SNS is also quite different from the one observed in the
corresponding MST and GT networks, where most of the
fragmentation is similar under random and selective re-
moval of nodes (Fig. 4b).

However, the speed at which fragmentation occurs
shows a great variability among SNS, between fR = 0.085
(El Agustino) to fR = 0.327 (Rostock). There is a ten-
dency for fR to decrease with network size n, as it does
in the MST networks, while in the GT networks fR is in-
dependent from n (Fig. 4c). However, in the SNS, there
still exists a strong variability for networks of equivalent
size n.

We compute the relative robustness f∗
R between MST

and GT networks defined as:

f∗
R =

fS
R − fMST

R

fGT
R − fMST

R

, (8)

where fS
R , fMST

R and fGT
R correspond to the random ro-

bustness in the settlement, the MST and the GT net-
works respectively. The relative robustness f∗

R is signifi-
cantly correlated with several topological characteristics
of the network: it is positively correlated with meshed-
ness M (r = 0.843, N = 41, p < 0.001, Fig. 5a). This
further supports the idea that the cycles may be a key
feature for the network properties of robustness to discon-
nections. There is also a significant positive correlation be-
tween f∗

R and network assortativity Γ (r = 0.624, N = 41,
p < 0.001; Fig. 5b), which adds weight to the conjecture
of Newman [25] which states that disassortative networks
may be more vulnerable to random disconnections.

The parameter ξ in the degree distribution tail, which
reflects the skewedness of the tail, is also significantly pos-
itively correlated with f∗

R (r = 0.685, N = 35, p < 0.001,
Fig. 5c). The more heterogeneous is the degree distribu-
tion, and the more robust to disconnection is the network,
which gives support to the conjecture of [31]

A striking feature in SNS is that Eglob,G and fr are
strongly correlated (r = 0.915, N = 41, p < 0.001). In
our sample of settlements, the relation between path sys-
tem efficiency and network robustness appears to be linear
(Fig. 6). We have shown that this increase is clearly corre-
lated with an increase in meshedness. However, increasing

Fig. 4. (a) Settlement network fragmentation, measured by
the relative size of the largest component S, under random
(black curves) and selective (grey curves) removal of a fraction
of nodes f . (b) Fragmentation of the MST (downward trian-
gles) and triangulated network (upward triangles) correspond-
ing to the Martina Franca #2 network under random (open
symbols) and selective (closed symbols) removal of nodes. (c)
Relation between the robustness to random node removal fR

and the network size n.

M means developing longer networks. We thus introduce
a normalized measure of length, where the lower bound
is represented by the length of the MST while the upper
bound corresponds to the GT:

L∗ =
LS − LMST

LGT − LMST
, (9)

where LS , LMST and LGT correspond respectively to the
total length of edges in the SNS, the corresponding MST
and GT networks.

The relative length of SNS varies from values close
to the MST length (minimal observed L∗ = 0.068 in
Ghardaia #1) to values that did not exceed the third of
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Fig. 5. Topological correlation with the relative robustness
f∗

R. Correlation with the meshedness coefficient M (a), the
assortativity coefficient Γ (b) and the skewedness of the degree
distrubtion ξ (c).

Fig. 6. Relation between robustness fR and geometric global
efficiency Eglob,G.

the triangulation length (maximal observed L∗ = 0.245 in
Qazvin #2). However, as relative global efficiency E∗

glob,G,
E∗

glob,T and relative robustness f∗
R increase faster than L∗

(Fig. 7), high levels of path system efficiency and robust-
ness can be reached with only a slight increase in L∗. From
the relation that we observe, it seems that most of the
gain in efficiency and robustness is achieved in the initial
increase in length departing from a MST.
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Fig. 7. Relation between the relative length L∗ and the rela-
tive geometric global efficiency E∗

glob,G (a), the relative topo-
logical global efficiency E∗

glob,T (b), and the relative robustness
f∗

R (c), The down-left corner (toward coordinates 0, 0) cor-
responds to the length, robustness and efficiency of the MST
while the upper left corner (coordinates 1, 1) correspond to
these characteristics for GT networks.

6 Discussion

Urban centers are one the first complex webs constructed
by human societies. They involve several layers of com-
plexity and provide the matrix for economic and social
evolution. One of the most obvious levels of description
deals with their static architecture, as revealed by their
street maps. In some cases, such maps are highly or-
dered (such as in Manhattan or Barcelona cores) but many
others (such as those analyzed here) clearly depart from
the grid-like picture. In urban settlements, particularly
at some small scales, these networks result from decen-
tralized growth and are closer to other patterns observed
in nature, such as ant tunneling networks [17]. In this
paper we provide the first analysis of a large sample of
self-organized SNS, which complements the recent analy-
sis by Carvalho and Penn involving large-scale urban space
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organization [5]. The basic observations reported here are
summarized as follows:

(1) Street networks are planar graphs and such planarity
strongly constrains their heterogeneity, which has been
shown to be rather limited (they exhibit single-scale
distributions of links and are sparse, with 〈k〉 ≈ 2.5).

(2) The analysis of correlations reveals that most of these
networks are diassortative and thus nodes with large
degree tend to be unconnected among them.

(3) By means of Euler’s formula, we defined a measure
of meshedness, M , that quantifies the relative amount
of faces in comparison with the two extremes that are
trees and triangulations. Far from being ordered square
meshes, many of the SNS that we have studied are
closer from tree-like structures, with the denser SNS
hardly reaching half of the cycles of a square grid. Our
measure shows that such measures as the clustering co-
efficient (and any variants measuring short cycles only)
would not allow capturing the characteristic presence
of a limited amount of large cycles, though our results
show that the presence of few of these cycles may have
strong consequences on several network properties.

(4) Network efficiencies have been characterized using
the Latora-Marchiori measure [26,32,33]. Though this
measure deals with the length of shortest-paths be-
tween nodes rather than with actual trips and flows
taking place on these paths, our results bring interest-
ing insights about the relation between several network
characteristics and their consequences on the path sys-
tem, which may influence strongly the traffic and flows
taking place on these networks. Indeed, efficiency dis-
played much variation among different networks, from
values as low as trees to values close to triangulations,
and correlated well with M . Thus the presence of mul-
tiple paths and the reduction of detours in SNS seem to
be mainly achieved by a slight increase in meshedness.

(5) As shown for ecological systems exhibiting limited het-
erogeneity in degree distributions [30,31], the SNS ex-
hibit fragility under selective removal. Given their spa-
tially extended character and decentralized origins, the
removal of high-k nodes has an important impact on
network reliability. Conversely, removal of low-k nodes
(the most common) has little effects. These effects of
node removal are not exhibited by MST and GT net-
works, which behave similarly for both types of pertur-
bation. The correlations between the level of robust-
ness in a SNS and its meshedness suggest that these
properties of the SNS may be related to their cycle
structure.

The local character of evolutionary rules implicit in the
development of SNS has shaped them through their his-
tory. The patterns revealed by our study indicate that self-
organized SNS display special features not shared by other
standard random graphs. They differ from greedy trian-
gulations and spanning trees. At one extreme, we have
SNS corresponding to an assembling of tortuous tree-like
structures. From this extreme, there exists a whole range
of SNS that are characterized by a progressive and paral-
lel increase in meshedness and heterogeneity in the degree

distributions. These progressive changes in the SNS topol-
ogy lead to a web that is robust against random failure
and yet fragile under removal of key nodes.

Remarkably, the street networks studied here share
most of these structural properties with at least one other
class of planar networks in nature, namely the ant tun-
nelling networks [17]. In particular, both types of networks
exhibit a similar relationship between cost and efficiency:
the efficiency increases sharply as soon as a few cycles are
introduced, while it saturates before the number of cycles
reaches values of grid-like patterns. The same type of re-
lationship has also been recently observed in another set
of street networks studied by Cardillo et al. [34]. Their
sample spanned networks with higher relative costs than
the one studied here, and the authors were able to esti-
mate that the saturation of the relative efficiency around
a value of 0.8 for relative costs higher than 0.25.

It can be noted that some of the street networks stud-
ied here exhibit at least one feature that was never ob-
served in tunnelling networks: diassortativity. This prop-
erty seems to be associated with street patterns standing
between tree-like networks and mesh networks. In these
networks, diassortativity might be explained by the exis-
tence of hierarchical like tree structures partially merged.

What are the factors associated with these variations
in the SNS topology? One can speculate that the poor
global efficiency of several SNS may be associated with a
different use of the path system (e.g. different transporta-
tion modes) or different distribution of trips among the
network, which may compensate the presence of so strong
detours. A possible correlation between a particular net-
work topology and the actual use of these SNS networks
remains to be studied.

How does these factors relate to the network of rela-
tionships and collaborations between the agents that built
the network, in a particular context? Understanding the
link between them may bring new insights about the evo-
lution of the urban networks, and more generally of com-
plex networks whose growth occurs in planar constraints.
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Préalable” (Evolving morphologies without pre-defined ad-
dresses)

7. F. Schweitzer, W. Ebeling, H. Rosé, O. Weiss, Evol. Comp.
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